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deficiencies, hypogonadism and central adrenal insuffi-
ciency. Obesity and its complications are the major causes 
of morbidity and mortality in PWS.
Methods An extensive review of the literature was per-
formed and interpreted within the context of clinical prac-
tice and frequently asked questions from referring physi-
cians and families to include the current status of the cause 
and diagnosis of the clinical, genetics and endocrine find-
ings in PWS.
Conclusions Updated information regarding the early 
diagnosis and management of individuals with Prader-Willi 
syndrome is important for all physicians and will be helpful 
in anticipating and managing or modifying complications 
associated with this rare obesity-related disorder.
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Introduction

Prader-Willi syndrome (PWS) was first described by 
Prader et al. in 1956 [1] and now recognized as a genomic 
imprinting disorder whereby differential expression of 
genes depending on the parent of origin contributes to the 
imprinting process. Errors in genomic imprinting, which 
occurs during both male and female gametogenesis are 
causative for PWS and include the loss of expression of 
paternal genes, which are normally active and located in 
the chromosome 15q11-q13 region [2–6]. Conversely, 
a loss of expression of the preferentially maternally 
expressed UBE3A gene in this region leads to Angelman 
syndrome (AS), an entirely different clinical disorder [7, 8]. 
About two-thirds of individuals with PWS have a de novo 
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thrive during infancy. As the individual ages, other features 
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hyperphagia, temperature instability, high pain threshold, 
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ing growth hormone and thyroid-stimulating hormone 
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paternally inherited deletion of the chromosome 15q11-q13 
region. The remaining individuals have maternal disomy 
15 (both chromosome 15 s received from the mother with 
no paternal chromosome 15 present) in about 25 % [9] of 
cases or have defects in the genomic imprinting center due 
to microdeletions or epimutations found in fewer than 3 % 
of cases [2, 4, 10, 11]. On very rare occasions, chromo-
somal translocations or rearrangements of the 15q11-q13 
region are reported [2, 12–17].

With an estimated prevalence of 1/10,000–1/30,000, 
PWS is the most common syndromal cause of life-threat-
ening obesity and the first recognized disorder related to 
genomic imprinting in humans [9, 18]. Affected infants 
uniformly have significant hypotonia, feeding difficulties, 
and failure to thrive (FTT), followed in later infancy or 
early childhood by excessive appetite with gradual devel-
opment of obesity, short stature and/or decreased growth 
velocity, intellectual disabilities (average IQ of 65), and 
behavioral problems (e.g., temper tantrums, outburst, and 
skin picking) [3, 13]. Hypothalamic dysfunction has been 
implicated in many manifestations of this syndrome includ-
ing hyperphagia, temperature instability, high pain thresh-
old, sleep-disordered breathing, and multiple endocrine 
abnormalities [3, 5, 6].

This review summarizes clinical manifestations, genet-
ics and genetic testing, sleep-disordered breathing, and 
screening with management of endocrine abnormalities 
associated with PWS.

Clinical manifestations and characteristic features 
of PWS

Severe hypotonia is consistently observed at birth and 
during the neonatal period [3]; therefore, PWS should be 
considered in all cases of unexplained neonatal hypotonia. 
Other features noted during the neonatal period include 
lethargy, feeding difficulties, thick saliva, and increased 
head/chest circumference ratio, small genitalia in both 
males and females with frequent cryptorchidism in males. 
In older untreated children with obesity, developmental 
delay, short stature and/or decreased growth velocity, and 
dysmorphic features are found including a narrow bifrontal 
diameter, almond-shaped palpebral fissures, a thin upper lip 
with a down-turned mouth, small hands and feet, straight 
borders of ulnar side of hands and of inner legs (Fig. 1) [3]. 
Clinical diagnostic criteria were established by consensus 
in 1993 [19]. Subsequently, definitive molecular genetic 

Fig. 1  a Obesity, almond shape 
eyes, down-turned mouth and 
straight borders of inner legs. 
b Straight borders of ulnar side 
of hands and scares from skin 
picking. c Active and healing 
skin lesions on scalp
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testing became available for laboratory diagnosis of PWS. 
These clinical criteria were later modified to help define 
people for whom further diagnostic testing is indicated and 
at different ages (Table 1) [20]. DNA methylation analysis 
is the most efficient way to confirm the diagnosis if PWS 
is suspected clinically but will not identify the genetic sub-
type [3, 21, 22].

Classically, two nutritional developmental phases have 
been described in PWS: Phase 1, in which the individual 
exhibits poor feeding and hypotonia, often with FTT; and 
Phase 2, which is characterized by “hyperphagia leading 
to obesity” [3, 6, 13] but recently a total of seven different 
nutritional phases, with five main phases and sub-phases 
in Phases 1 and 2 have been identified [23]. Increase in 
appetite is seen in Phase 2b at age 4.5–8 years, whereas 
the classical hyperphagia becomes evident during Phase 3 
(Table 2).

The last two decades have seen significant increases in 
the understanding of mechanisms controlling appetitive 
behavior, body composition, and energy expenditure. Many 
regions throughout the central nervous system play critical 
roles in these processes but the hypothalamus, in particular, 
receives and orchestrates a variety of signals to bring about 
coordinated changes in energy balance. Ghrelin, a 28 amino 
acid peptide produced in the stomach, is the only peripheral 
hormone to transmit satiety signal. Plasma ghrelin level in 

obese PWS individuals is higher than any other form of 
obesity and considered as one of the contributing factors 
for their obesity [24, 25]. A somatostatin analog infusion in 
4 adults [26] and long–acting octreotide infusion in 8 ado-
lescents with PWS effectively suppressed ghrelin elevation 
before meals but not the appetite [27]. Circulating ghrelin 
levels are elevated in young children with PWS long before 
the onset of hyperphagia, especially during the early phase 
of poor appetite and feeding [28]. Based on these studies, 
it seems unlikely that high ghrelin levels alone are directly 
responsible for the switch to the hyperphagic nutritional 
phases in PWS.

Diabetes mellitus type 2 (T2 DM), a metabolic disorder 
characterized by hyperglycemia in the context of insulin 
resistance has been reported in 25 % of adult PWS pop-
ulation [29]. Those individuals with T2 DM had a higher 
past maximum body weight and a greater likelihood of 
positive family history. Fasting insulin concentrations and 
homeostasis model assessment insulin resistance index 
however, are lower in PWS children than in obese control 
(P < 0.05) and similar to lean control subjects [30]. Not 
surprisingly, a study of 74 children with PWS at a median 
age of 10.2 years showed that none had T2 DM and only 
4 % had impaired oral glucose tolerance by OGTT [31]. T2 
DM should be managed accordingly with special attention 
to those children on GH treatment with higher risk for insu-
lin resistance. Periodic fasting serum glucose and insulin 
levels are recommended before and after initiation of GH 
treatment.

Genetics

Errors in genomic imprinting are the cause of PWS. It is 
considered as a phenomenon of epigenetics and modified 
dependent on the parental sex contributing the genes where 
epigenetic changes can control expression or gene activity 
without changing the DNA structure or base pair sequence 
[32]. The epigenetic process is reversible and occurs dur-
ing both male and female gametogenesis. The ‘on or off’ 
activity of gene expression or regulation is usually through 
DNA methylation at specific bases (e.g., cytosine). Nearly 
150 genes in humans are thought to be imprinted and con-
tain CpG-rich differentially methylated DNA regions that 
correlate with gene allele activity [18]; several located on 
chromosome 15.

The genes and transcripts located in the 15q11-q13 
region can be grouped into four areas delineated by three 
common deletion breakpoints (Fig. 2): (1) A group of non-
imprinted genes, GCP5, CYFIP1, NIPA1, and NIPA2, are 
located between proximal 15q11-q13 breakpoints BP1 and 
BP2 and other genes between 15q11-q13 breakpoints BP2 
and BP3 (e.g., P gene) are also expressed equally from the 

Table 1  Suggested new criteria to prompt DNA testing for Prader-
Willi syndrome (PWS)

Adapted from Gunay-Aygun et al. [20]

Age at assessment Features to prompt DNA testing for 
PWS

Birth to 2 years 1. Severe hypotonia and poor suck

2–6 years 1. Hypotonia with history of poor suck

2. Global developmental delay

3. Short stature and/or decreased growth 
velocity

4. Hypogenitalism/hypogonadism

6–12 years 1. History of hypotonia with poor suck

2. Global developmental delay

3. Excessive eating with central obesity, 
if uncontrolled

4. Hypogenitalism/hypogonadism

13 years through  
adulthood

1. Cognitive impairment; usually mild 
intellectual disability

2. Excessive eating (hyperphagia; obses-
sion with food) with central obesity, if 
uncontrolled

3. Hypogonadism and/or typical 
behavior problems (including temper 
tantrums and obsessive-compulsive 
features)

4. Short stature; small hands and feet
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paternal and maternal alleles; (2) imprinted genes (pater-
nal expression only) include MKRN3, MAGEL2, NDN, and 
the bicistronic SNURF-SNRPN gene; (3) the preferentially 
maternally expressed genes UBE3A and ATP10A (with 
disturbances in UBE3A causing Angelman syndrome); 
and (4) non-imprinted genes show evidence of paternally 
biased expression (e.g., GABRB3) [2, 33, 34]. The bicis-
tronic SNURF–SNRPN gene in the 15q11-q13 region is 
involved in mRNA splicing in the brain encoded by exons 
4 to 10. Exons 1 through 3 of this complex gene encode a 
separate protein, which is involved in the genomic imprint-
ing process [2]. Multiple copies of the so-called C/D box 
small nucleolar RNAs (snoRNAs) or SNORDs (SNORD64, 
SNORD107, SNORD109A, SNORD115, and SNORD116) 
are also located in this region and key in the development 
of PWS with involvement in RNA processing. SNORDs 
are encoded by a large extended transcript from the com-
plex SNURF-SNRPN gene locus and not translated into 
protein [35–38].

Other protein coding genes in the 15q11-q13 region 
include MKRN3, MAGEL2, and NDN which are imprinted 
and paternally expressed. They are located proximally to 
the imprinting center (IC) located at the SNRPN-SNURF 
gene complex locus and involved in neural development 
and brain function [2, 4, 5]. The MAGEL2 gene encodes 
a protein found in the hypothalamus and other brain areas 
and recently have been reported to be involved in autism 

spectrum disorder [39]. It appears to function in circadian 
rhythm, brain structure development, and human reproduc-
tion and infertility. The MKRN3 gene generates specific 
proteins (makorins), which are abundantly expressed in 
the brain and involved with hormone regulation and pre-
cocious puberty [40]. The NDN gene is thought to play a 
role in axonal outgrowth and expressed in brain regions 
possibly involved in regulating respiration rate. Two addi-
tional genes (PWRN1, PWRN2) are also located close to 
the NDN gene with the PWRN1 as a possible novel alterna-
tive start site for the SNURF-SNRPN gene complex activity 
[41]. The UBE3A and ATP10C genes are imprinted, mater-
nally expressed, and paternally silent. The UBE3A gene 
is involved in Angelman syndrome. Several transcripts in 
the 15q11-q13 region are read in an anti-sense direction 
and complementary to DNA sequences of other genes in 
a reverse direction, including the UBE3A anti-sense tran-
script. Other genes found in the distal non-imprinted area 
of the 15q11-q13 region include the gamma aminobutyric 
acid (GABA) receptor subunits (i.e., GABRB3, GABRG3, 
GABRA5), the P locus for oculocutaneous albinism type 2 
(OCA2) and HERC2 [2, 4, 5]. The HERC2 gene encodes an 
ubiquitin ligase protein, which is expressed in high levels 
in the fetus and lower expression in the adult brain, testis, 
ovary, and muscle tissue [10, 42].

Studies have shown that the GABA receptor subunit 
genes (i.e., GABRB3, GABRA5) are expressed unequally 

Table 2  Clinical characteristics 
of the nutritional phases seen in 
Prader-Willi syndrome

Adapted from Miller et al. [23]

Phase 0 Decreased fetal movements and lower birth weight than 
sibs

Phase 1a Hypotonia with difficulty feeding (0–9 months)

 Needs assistance with feeding either through feeding 
tubes [nasal/oral gastric tube or gastrostomy tube] or 
orally with special, widened nipples

 Decreased appetite

Phase 1b No difficulty feeding and normal growth (9–25 months)

Phase 2a Weight increasing without appetite increase (2.1–4.5 
years)

 Will become obese if given the recommended daily 
allowance [RDA] for calories

 Typically needs to be restricted to 60–80 % of RDA to 
prevent obesity

Phase 2b Weight and appetite are increased (4.5–8 years)

 Will become obese if allowed to eat what they want

Phase 3 Hyperphagic, rarely feels full (8 years-adulthood)

 Constantly thinking about food with temper tantrums 
related to food

Phase 4 Appetite is no longer insatiable (adulthood)

 Improvement in control of appetite and temper tantrums

 Most adults have not gone into this phase and maybe 
some (most?) never will
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between the paternal and maternal alleles thereby indicat-
ing altered allelic expression. Loss of the paternal allele 
for these genes produces lower than the expected 50 % 
expression which indicates paternal bias with more expres-
sion from the paternal allele than the maternal allele using 
lymphoblasts carrying different chromosome 15 defects 
(e.g., deletions, uniparental disomy) [33, 34]. GABA is an 
important neurotransmitter with inhibitory capability at the 
brain level. Thus, alterations in gene expression may be 
associated with appetite, visual perception, and memory 
changes. The P gene is involved with pigmentary status in 
individuals with PWS or Angelman syndrome having the 
typical chromosome 15q deletion. This oculocutaneous 
albinism type 2 gene when disturbed in individuals with 
PWS or Angelman syndrome having the typical 15q11-q13 
deletion will show hypopigmentation [2, 4, 5, 43].

Genetic subtypes and diagnostic testing 
for Prader‑Willi syndrome

There are three main genetic mechanisms that result in 
PWS: paternal 15q11-q13 deletion, maternal uniparental 
disomy (UPD) 15, and imprinting defects (ID).

Paternal deletion

Two proximal chromosome 15q11-q13 breakpoints (BP1 
and BP2) and a distal breakpoint (BP3) appear to predis-
pose to the typical deletions seen in PWS (65–75 % of 
cases) and Angelman syndrome [2, 4, 5]. The most com-
mon typical deletions are of two classes, Type I and Type II 
(Fig. 2). The Type I deletion is larger and involves the prox-
imal breakpoint BP1 which is nearest to the chromosome 

Fig. 2  High resolution chromosome 15 ideogram and locations of 
breakpoints BP1 and BP2 [at 15q11.2 band] and BP3 [at 15q13.1 
band] are shown with position of the four non-imprinted genes 
between breakpoints BP1 and BP2 and those imprinted and non-

imprinted genes between breakpoints BP2 and BP3. Three recognized 
deletion subtypes and their locations in the 15q11-q13 region (i.e., 
15q11.2 BP1-BP2; typical 15q11-q13 type I; typical 15q11-q13 type 
II) are represented
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15 centromere while the smaller Type II deletion involves 
the other proximal breakpoint BP2. The third common 
breakpoint (BP3) is located distally in this chromosome 
region and is involved in both typical deletion types [44]. 
Four genes are located in the genomic area between proxi-
mal breakpoints BP1 and BP2 including GCP5, CYFIP1, 
NIPA1, and NIPA2. These genes are overly expressed in the 
brain and when mutated (e.g., NIPA1) can lead to spastic 
paraplegia and brain disturbances [45, 46]. PWS individu-
als with the smaller Type II deletion have these four genes 
intact. Individuals without PWS are reported with behav-
ioral and autistic findings when only a deletion is present 
involving the region between breakpoints BP1 and BP2, the 
chromosome 15q11.2 BP1-BP2 microdeletion (Burnside-
Butler) syndrome [47–49].

PWS individuals with the larger Type I deletion have 
been reported to be more prone to obsessive compulsion 
and self-injury (skin picking) in addition to visual process-
ing deficits and lower measures of academic performance 
than those PWS individuals with the smaller Type II dele-
tion having the four genes intact between proximal break-
points BP1 and BP2 [50, 51]. Other deletions that are not 
typical and vary in size involving areas of the 15q11-q13 
region are reported in about 5 % of PWS individuals [2, 4, 
5, 16]. These individuals are often more atypical in their 
clinical presentation [15].

The smallest genetic defects in the 15q11-q13 region 
often include microdeletions of the paternally expressed 
non-coding snoRNAs such as SNORD115 and SNORD116 
[15, 35–37]. Studies in mice containing disturbances of 
SNORD116 equivalent transcripts exhibit hyperphagia and 
growth failure, which are common features in PWS. In 
addition, research supports that SNORD115 regulates alter-
native splicing of the human serotonin 5-HT2C receptor 
providing an altered receptor form leading to excessive eat-
ing behavior [38], a cardinal feature seen in PWS.

Maternal uniparental disomy (UPD) 15

The second most frequent genetic finding in PWS is due 
to an error in meiosis, most common when two maternal 
chromosome 15 s are contributed in the egg and fertilized 
by a normal sperm. This leads to 47 chromosomes in the 
fetus causing trisomy 15. Trisomy 15 is a relatively com-
mon cause of early miscarriages in humans. If a trisomy 
15-rescue event occurs, then one of the chromosome 15 s 
will be lost from the trisomic cell leading to a normal 46 
chromosome count with continuation of the pregnancy. If 
the paternal chromosome 15 is lost then the cell will have 
two maternal chromosomes 15 s. The fetus will survive 
with two maternal chromosomes 15 (UPD) with the clini-
cal picture of PWS but normal cytogenetic findings at the 
time of delivery [52].

Maternal uniparental disomy (UPD) 15 in PWS can be 
of three types: (1) heterodisomy, as a result of non-disjunc-
tion of homologous chromosome 15 s in meiosis I, thus 
the baby inherits each of the mother’s two chromosome 
15 s; (2) isodisomy, as a result of non-disjunction in meio-
sis II with two identical chromosome 15 s inherited from 
the mother; and (3) segmental form occurs when regions 
of chromosome 15 have identical genetic information as a 
result of crossing-over events and non-disjunction in meio-
sis I or possibly by a somatic chromosome recombination 
in early pregnancy. The type of disomic event may impact 
on the pregnancy and clinical outcome of the fetus. Most 
PWS subjects with maternal disomy 15 have the heterodis-
omic form [4, 5, 53].

Extra attention however, should be given to PWS indi-
viduals with maternal disomy 15 if the isodisomic or seg-
mental type is present by examining for additional genetic 
disorders due to mutant recessive genes carried on the 
maternal chromosome 15q. Special genetic testings such as 
high-resolution DNA microarrays with SNP probes are rec-
ommended to assist in identifying the disomic status. As in 
other non-disjunction cases, the risk of maternal disomy 15 
increases with maternal age. Those PWS individuals with 
maternal disomy 15 often have delayed diagnosis, higher 
verbal IQ scores with greater attention, and factual knowl-
edge and better social reasoning skills than those with the 
typical Type I or Type II deletions involving the 15q11-q13 
region but are more prone to increased episodes of psycho-
sis and autistic behaviors [45, 50, 51].

Imprinting defects (ID)

Most individuals with PWS are due to sporadic causes but 
in some families the defective error is from an epimutation 
or incomplete processing of the imprint in germ cell mei-
osis from the father or from a microdeletion of the DNA 
imprinting center (1–3 %). The microdeletion defect has 
been reported in about 15 % of individuals with PWS due 
to ID [11], although more recent studies indicate a possi-
ble higher rate for microdeletions in the imprinting center 
[54]. This microdeletion can be contributed by the paternal 
grandmother to the father and lead to birth of another child 
with PWS. The risk in this situation is 50 %.

Diagnostic genetic testing

DNA methylation provides a powerful tool to assess pater-
nal-only, maternal-only, or biparental (normal) inherit-
ance. Normal individuals have both a methylated and an 
unmethylated allele, whereas individuals with PWS have 
only the maternally methylated allele, therefore the most 
efficient analysis to diagnose PWS. The most widely used 
DNA methylation analysis only targets the 5′ CpG island 
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of the SNRPN locus and will correctly diagnose PWS in 
more than 99 % cases but can not distinguish between a 
deletion, UPD or ID [3]. A more recent generation of DNA 
methylation assay, “methylation-specific multiplex-ligation 
probe amplification” (MS-MLPA) is more informative. 
MS-MLPA will determine the methylation status by using 
5 to 6 methylation probes in the SNRPN locus and other 
imprinted genes close by to confirm the diagnosis of PWS 
as well as about 30 probes within the 15q11-q13 region 
that are used with reference (control) probes outside of the 
region and on other chromosomes to determine the copy 
number status [21, 22]. This assay will identify the typical 
deletion, which is seen in the majority of individuals with 
PWS as well as the methylation status. If the deletion is not 
seen with MS-MLPA testing and the PWS methylation pat-
tern is present, then high-resolution microarrays including 
SNP probes should be used to help identify an imprinting 
defect or maternal disomy 15 status. In some families more 
testing will be needed including genotyping of chromo-
some 15 DNA markers using parental DNA.

Sleep disruption and sleep‑disordered breathing

Sleep disruption and sleep-disordered breathing have been 
linked to significant deficits in neurocognitive function, 
including poor focus, excessive daytime sleepiness, and 
irritability in both the general population [55] and in indi-
viduals with PWS [56]. Initially prompted by the daytime 
feature of hypersomnolence, many individuals with PWS 
were identified with polysomnographic features of sleep-
disordered breathing, including obstructive, central, and 
mixed sleep apnea syndromes. Factors including develop-
mental brain abnormalities, craniofacial dysmorphia, hypo-
tonia, obesity, and chest wall deformities have been cited as 
factors that can contribute to both the presence and severity 
of sleep-disordered breathing in PWS [57]. Following their 
metanalysis of the literature on sleep-disordered breathing 
in PWS, Sedky et al. [57] concluded that while obstruc-
tive sleep apneas (OSA) were closely related to obesity 
in non-PWS children, it was unclear whether body mass 
index (BMI) played a significant role in increasing OSA 
risk in PWS children. Central apneas were more common 
in infants studied with PWS [58]. Symptomatic narcolepsy, 
with or without cataplexy has also been reported in up to 
35.7 % of children with PWS [57].

Hypocretin containing neurons, located in the hypo-
thalamus are thought to play an important role in main-
taining wakefulness as well as influencing eating behavior. 
Congenital dysfunction/developmental failure of the hypo-
cretin system has also been proposed as a potential etiol-
ogy in this population [59–61]. In genome wide expres-
sion studies, Bittel et al. [62] reported elevated expression 

patterns of the hypocretin (HCRT) gene in males with 
PWS, although an early study by Fronczek et al. [63] did 
not show a significant difference in the total number of 
hypocretin-containing neurons among PWS patients and 
age-matched controls, either in adults or infants.

Excessive daytime sleepiness (EDS) is a very common 
feature in PWS, occurring in 70–100 % of adults with 
PWS. Most recently, Mass et al. [64] utilized actigraphic 
scatter-plots to explore the temporal distribution of EDS 
with severe disruptive behavior and to identify situations 
where sleepiness was most likely to occur. Lack of struc-
tured activities, particularly in the afternoons and evenings 
were associated with higher rates of EDS.

GH is now commonly used in the management of PWS. 
The effect of GH during wakefulness has demonstrated 
improvements in respiratory mechanics and ventilatory 
responsiveness [65]. More recently, Katz-Solomon et al. 
[66] performed studies to assess cardiorespiratory control 
during sleep following the initiation of GH. They demon-
strated improved oxygenation and cardiovascular func-
tion at 6 months after the initiation of GH in 16 individu-
als between ages 2–32 months. However, their study also 
showed that the ventilatory response to 4 % CO2 and 100 % 
O2 was essentially unchanged during quiet sleep suggesting 
that the previous changes were unrelated to an improve-
ment in chemoreflex-mediated autonomic drive [66].

Longitudinal follow-up studies performed after 2 years 
of GH therapy reported by Al-Saleh et al. [67] in 15 chil-
dren between 0.8 and 15.4 years (median 3.7 years) showed 
a median obstructive apnea/hypopnea index (OAHI) of 0.8 
(0.3–6.1) and central apnea index (CAI) of 0.9 (0.2–2.3). 
GH was discontinued in two of these children due to the 
development of severe OSA identified by polysomnog-
raphy at 6 weeks post-initiation of GH therapy. However, 
at 2 years post-treatment no significant changes in sleep-
disordered breathing were identified in these children, sug-
gesting a period of increased vulnerability in the first few 
weeks after the initiation of treatment [67].

Berini et al. [68] evaluated adenotonsillar size in 50 
children with PWS before the initiation of GH treatment 
at 6 weeks, at 6 months, at 12 months, and then yearly up 
to 4 years. Three children developed severe OSA requir-
ing discontinuation of growth hormone therapy. This group 
found a direct correlation of OAHI with adenoid size but 
neither with tonsillar size nor with plasma IGF-1 levels 
[68]. Thus, it is appropriate to screen all individuals with 
PWS for sleep-disordered breathing. While screening 
questionnaires and physical examinations may be help-
ful, neither has shown good specificity or sensitivity [69]. 
Opinions vary as to the timing and frequency of sleep 
evaluations but most agree that it is appropriate to study 
children before the initiation of GH and then periodically, 
especially with significant changes in weight, prior to and 
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following adeno-tonsillectomy and before spinal or cranio- 
facial surgery.

Whitman and Myers [70] also recommended a repeat 
polysomnogram at 3–6 months after the initiation of GH 
in patients with PWS previously diagnosed and treated 
for OSA as well as regular screening with the Chervin 
sleep questionnaire (questions 1–6), examination of the 
oropharynx for tonsillar hypertrophy and monitoring of 
IGF-1 levels during the entirety of GH therapy. Multiple 
sleep latency testing (MSLT) is also useful in assessing 
pathologic sleepiness and is done following an overnight 
polysomnogram.

In children, adeno-tonsillectomy is the preferred treat-
ment for obstructive sleep apnea. High-risk children includ-
ing those with PWS and especially those with severe apnea 
may have residual apneic events and require post-operative 
evaluation to assess if additional therapies, such as Con-
tinuous Positive Airway Pressure (CPAP) are needed [71, 
72]. Velopharyngeal dysfunction with hypernasality requir-
ing additional surgical intervention has also been reported 
following adeno-tonsillectomy in children with PWS [73]. 
In adults with PWS, CPAP is recommended as the initial 
therapy due to OSA [74].

Growth hormone (GH) deficiency

Short stature is a main characteristic of individuals with 
PWS. Children with PWS fail to show the growth accel-
eration seen in puberty and the mean final height with-
out treatment is 148 cm in girls and 155 in boys [75, 76]. 
Growth charts for non-GH-treated infants and children with 
PWS have been developed [77, 78]. Non-PWS obese chil-
dren have decreased GH secretion while maintaining nor-
mal serum insulin-like growth factor-1 (IGF-1) levels and 
normal height. Children with PWS have short stature with 
low serum GH and IGF-1 levels, therefore true GHD [76, 
79–81] is considered.

Children with PWS treated with GH through childhood 
are able to achieve normal adult height [75, 82]. Beneficial 
effects on body weight, body composition, and exercise 
capacity found in these studies prompted studies looking at 
the effects of GH unrelated to height. In one study, 60 pre-
pubertal children ages 3.13–7.16 years had normal height 
and positive long-term effects on maintaining body compo-
sition after 8 years of GH treatment without any adverse 
effect on glucose homeostasis, serum lipids, blood pres-
sure, and bone maturation [83].

Anabolic effects of GH including increase in lean 
body mass, motor strength, and decrease in fat mass were 
reported in 21 children when started at 13 ± 6 months of 
age for a period of 6 years and compared with 27 untreated 
children of similar age [80]. A recent study reported low 

BMI in 61.5 % (33.8 % osteoporosis and 27.7 % osteope-
nia) of 101 patients with a mean age of 5.4 years (range 
3–17 years.) and significant improvement after GH treat-
ment for a mean period of 54 months (range 6–144 months) 
[84].

The beneficial effect of GH therapy in childhood into 
adulthood is unclear after GH is discontinued. A report of 
GH treatment discontinuation after 12 and 24 months in 14 
individuals with PWS revealed an increase in BMI-SDS 
(P = 0.008 and P = 0.003) and visceral fat (P = 0.062 
and P = 0.125), respectively [85]. In one study, however, 
improved mean BMI (32.4 vs. 41.2), body composition, 
lower mean hemoglobin A1c, lower mean insulin resist-
ance, and less hypertension were reported in 20 adults 
(mean age 25.4 years) with PWS at 7.0 ± 4.4 years after 
discontinuing treatment initiated at age 11.8 ± 2.7 years 
when compared with 40 untreated PWS adult group [86]. 
Butler et al. [87] studied 11 adults with PWS (average 
age = 32 years) over a 2-year period with GH treatment 
during the first year only. Total lean muscle mass and mod-
erate-vigorous physical activity and plasma IGF-1 and high 
density lipid (HDL) levels were significantly increased 
while on GH, while percent body fat decreased during 
the 12 months of GH treatment. IGF-1 and HDL levels 
returned to near baseline and body fat increased after GH 
treatment during the second year. In addition to improved 
body composition, increase in muscle strength and exercise 
tolerance has been reported after 12 and 24 months of GH 
treatment in 15 obese adults with PWS [88]. Cardiovas-
cular features in obese PWS adults including smaller left 
ventricular size and lower systolic function are similar to 
those reported in adult GHD [89]. In one study, left ventric-
ular mass increased significantly after 1 and 2 years of GH 
treatment (0.40 ± 0.11 to 0.97 ± 0.17 mg/days) in 9 adult 
PWS individuals without evident abnormalities of systolic 
and diastolic function [90]. These data indicate that benefi-
cial effects of GH are still present even after the epiphyses 
are fused and long-term GH treatment, in addition to strict 
diet and exercise program may be necessary to maintain 
good body composition.

Beneficial cognitive effects have been reported in chil-
dren [91–93] and adults [94] with PWS during GH treat-
ment. Recent study in 19 children with PWS at median age 
6.3 years, showed no changes in cognition and behavior 
over one or two years of GH treatment [95]. These chil-
dren however, had marked deterioration in behavior at 
6 months after abrupt GH discontinuation. These studies 
demonstrated that GH maintenance therapy may prevent or 
slow down the progression of behavioral problems in PWS 
individuals.

Recombinant human growth hormone (hGH) was FDA 
approved in the United States in 2000 for the indication of 
short stature and growth failure due to PWS. In Europe, 
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growth retardation is not required whereas improvement 
of body composition is included in the approved indica-
tion of GH therapy in PWS [96]. Recommended starting 
dose in children is 0.18–0.3 mg/kg/week given as daily 
subcutaneous injections with careful monitoring of clinical 
status, bone age, and serum IGF-1 levels at regular inter-
vals. Potential concerns related to excessively high IGF-1 
levels include lymphoid hyperplasia leading to OSA and a 
theoretical increase in malignancy risk. In one study, IGF-1 
and IGF-binding protein-3 (IGFBP3) levels were evaluated 
over a 2-year period in a group of 33 children with PWS 
treated with GH. These subjects were compared to 591 sub-
jects treated for GH deficiency. The PWS group had sig-
nificantly higher IGF-1 levels despite lower doses of GH. 
However, there was no significant difference in IGF-1 to 
IGFBP3 molar ratios between the groups, suggesting that 
bioavailable IGF-1, and therefore risk for adverse effects, 
may be similar in both groups [97]. In view of existing 
information, GH dose based on ideal rather than actual 
body weight and monitoring serum IGF-1 levels between 
0 and +2 SDS and/or IGF-1/IGFBP3 molar ratio without 
exceeding GH pretreatment should be considered to pre-
vent abnormal serum IGF-1 elevation, insulin resistance, 
and occasional acromegaloid features seen in children with 
PWS at standard recommended GH dose.

The prevalence of scoliosis in PWS is high (30–80 %) 
[98, 99]. Scoliosis is a major concern for patients with 
PWS treated with GH. Prevalence, onset, and progression 
of scoliosis are not affected by the genotype or by growth 
hormone treatment [75, 100–103]. Therefore, scoliosis is 
no longer a contraindication for GH treatment in children 
with PWS. However, due to the high prevalence of scoli-
osis and the potentially associated morbidities in patients 
with PWS, regular physical examinations and periodic 
radiographic evaluations of the spine are recommended.

Significant attention has been given to the association of 
GH therapy and sudden death in PWS. In a review of 64 
cases of death in children from a few days to 19 years of 
age, 28 subjects (44 %) received GH treatment [104]. Res-
piratory disorders were the most common cause of death 
among treated and untreated patients. In this review, most 
of the deaths in GH-treated children (75 %) occurred dur-
ing the first 9 months after the initiation of GH treatment. 
High mortality rate and increased risk of sudden infant 
death have been reported in children with PWS independ-
ent of GH therapy and without evidence of an associa-
tion between death and GH treatment [105, 106]. In view 
of these data, the initiation of GH is recommended at the 
lower dose, 0.18 mg/kg/week in infants with PWS.

Benefits have been reported with increased lean body 
mass and decreased body fat mass after 6–12 months GH 
treatment in adults [107–110]; however, GH is not FDA 
approved for adult PWS individuals unless confirmed 

by standard adult GH stimulation testing. The prevalence 
of GH deficiency in adults with PWS ranges from 15 to 
95 %, depending on the agents used for stimulation testing 
and the threshold GH level used to define deficiency [107, 
108]. A normal IGF-1 level does not exclude the diagno-
sis of GHD and provocative testing is mandatory to make 
the diagnosis of adult GH deficiency (AGHD). The Endo-
crine Society (ES) recommends that the insulin tolerance 
test (ITT) and the GHRH- arginine test are sufficiently 
sensitive and specific to establish the diagnosis of AGHD. 
Glucagon stimulation test can also be used when GHRH is 
not available and performance of an ITT is either contrain-
dicated or not practical in a given patient [111]. It is recom-
mended that GH dosing regimens be individualized rather 
than weight-based and to start with low doses (0.1–0.2 mg) 
then titrated according to clinical response, side effects, 
and IGF-1 levels.

Hypogonadism

The term “congenital hypogonadism” refers to complete or 
partial pubertal failure due to insufficient secretion of the 
pituitary gonadotropins LH and FSH and gonadal sex ster-
oids. Hypogonadism represents a common clinical feature 
in PWS. Clitoral and labia minora hypoplasia in females 
and micropenis with hypoplastic scrotal sac in males are 
evident at birth. Unilateral or bilateral cryptorchidism is 
present in 80–90 % of males [5]. Similar to many other 
manifestations of PWS, hypogonadism has been classically 
thought to be hypothalamic in etiology. However, recent 
evidence has emerged supporting primary gonadal failure 
as a significant contributor to male hypogonadism [112–
114]. Other studies have also shown a combined picture of 
hypogonadotropic hypogonadism with relatively low LH 
levels, and primary hypogonadism with low inhibin B and 
relatively high FSH levels [114, 115].

The transient increase in gonadotropins and gonadal 
hormonal levels occurs during the first months of life, and 
“minipuberty” is normal in infants with PWS [116, 117]. 
Gonadotropins and testosterone play important roles in tes-
ticular descend. If hypogonadotropic hypogonadism is pre-
sent in boys, decreased LH, FSH, testosterone, and inhibin 
B levels are found in addition to a micropenis (stretched 
penis <2.5 cm) and cryptorchidism. These findings suggest 
that additional factors may be responsible for the high inci-
dence of cryptorchidism in infants with PWS.

Gonadal function has also been evaluated longitudi-
nally in 61 girls with PWS. LH levels were found to be 
relatively low for the low estradiol levels observed, and 
FSH levels were normal. Although the girls had a normal 
onset of puberty, the progression was delayed in compari-
son to the normal population [118]. The pattern of gonadal 
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dysfunction in PWS females (primary and combination of 
a primary gonadal defect and hypothalamic dysfunction) 
seems to be similar to those observed in boys, male adoles-
cents, and adults with PWS [119, 120]. Four females with 
PWS diagnosed as children (3 with deletions and one with 
UPD) with onset of menarche in their 20 s became preg-
nant and delivered children by caesarian section. Two of 
these mothers had normal children and the two PWS moth-
ers with 15q11-q13 deletions delivered a male and a female 
with Angelman syndrome also with the deletion [121, 122].

Due to high prevalence of premature adrenarche in PWS 
[123–125], commonly associated with pubic or axillar hair, 
careful assessment, preferably using a Prader orchidometer, 
is necessary to demonstrate further testicular enlargement 
as a first sign of puberty in males (testicular volume greater 
than 4 ml indicates onset of puberty) and breast develop-
ment Tanner stage II as the first sign of puberty in females 
with PWS. During adolescence, the laboratory diagnosis of 
hypogonadotropic hypogonadism is relatively simple with 
the identification of very low circulating total testosterone 
and low to low-normal gonadotropin and inhibin B levels. 
This hormone profile rules out a primary testicular disorder 
in which testosterone and inhibin B levels are low, whereas 
FSH and LH are elevated. Serum FSH, LH, estrogen, and 
inhibin B profiles are recommended in females with PWS 
before considering sex hormone replacement therapy 
(SHRT).

The beneficial effect of sex steroids on the muscle mass 
and bone health in an individual is well known. Previous 
studies have suggested that sex steroid deficiency contrib-
utes to low bone density in adults with PWS [126, 127]. 
However, no consensus statement exists as to the most 
appropriate regimen of sex hormone treatment in PWS. 
The choice of a particular hormone replacement therapy 
protocol will depend on the age at diagnosis and local 
practices. In a recent study, the administration of human 
chorionic gonadotropin (hCG) 250–500 IU intramuscular 
biweekly injections for 6 weeks in 16 infants (median age 
1.6 years) with PWS with undescended testes resulted in an 
anatomical lower testis position in most and 23 % had com-
plete scrotal descent. Orchidopexy was required in 76 % 
of cases in order to ensure a stable position in the scrotum 
[128]. Furthermore, the American Academy of Pediatrics, 
Committee on Genetics recommends a therapeutic trial of 
hCG before considering surgery for undescended testes 
[129]. The benefits of this modality of treatment include 
avoidance of general anesthesia, increased scrotal sac size 
and phallus length to facilitate circumcision/micturition, 
and thereby improving surgical outcomes for undescended 
testes.

Testosterone replacement treatment can also lead 
to improvement in quality of life in males with hypog-
onadism [130]. In general practice, injectable testosterone 

is preferred for reasons of convenience and cost. Testos-
terone enanthate (TE), one of the preparations available 
on the international market, can be injected once every 2 
or 3 weeks in adult males with hypogonadism [131]. It has 
been thought that TE may increase aggressiveness, but this 
has not been clearly demonstrated. However, it seems rea-
sonable to start as low as 25 % of the recommended normal 
adult TE dose (200–250 mg) with gradual increase as toler-
ated to keep low-normal serum testosterone levels in males 
while under an endocrinologist’s guidance. Virilization of 
male patients can also be achieved by percutaneous testos-
terone administration in gel or patch form. However, these 
alternatives are expensive and require daily administration, 
raising problems of adherence and the risk for skin irrita-
tion and skin picking behavior in PWS.

Guidelines for hormonal replacement therapy in females 
with PWS are tailored individually depending on sexual 
development, hormonal profiles, bone density, and emo-
tional and social needs. Oral estrogen alone or in combina-
tions with progestin is well tolerated. Girls with PWS have 
normal or near normal secondary sexual characteristics 
including breast development and menses may occur indi-
cating a lesser degree of hypothalamic-gonadal dysfunction 
in females and therefore counseling about the risk of preg-
nancy and discussion of birth control during reproductive 
age would be advisable.

Hypothyroidism

Similar to other endocrinopathies in PWS, the etiology of 
hypothyroidism is thought to be central in origin. Hypo-
thyroidism has been reported in approximately 20–30 % 
of children with PWS [132]. Yet, in one study of 47 indi-
viduals with PWS age 10–44 years, the prevalence of hypo-
thyroidism was 2.1 % and not different than the normal 
population of 2 % [133]. Based on low total (T4) and free 
thyroxine (FT4) in the presence of normal thyroid-stimu-
lating hormone (TSH), one study reported a prevalence of 
72.2 % of central hypothyroidism in children with PWS 
less than 2 years of age [134]. A recent study revealed nor-
mal newborn screening in 23 neonates with PWS for con-
genital hypothyroidism. In the same study, TSH response 
to thyroid-releasing hormone (TRH), T4 and FT4 in 21 
children from birth to adolescence showed normal pat-
terns except in one elder child with central hypothyroidism 
[135]. Based on these studies, the prevalence of hypothy-
roidism is variable and cannot be clearly established. Thus, 
levothyroxine treatment should not be routinely prescribed 
in children with PWS unless confirmed by thyroid function 
testing. It is recommended that baseline thyroid function 
testing (FT4 and TSH) be done during the first 3 months of 
life unless they have had a normal newborn screening and 
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annually thereafter, especially if the patient is receiving GH 
therapy.

Adrenal insufficiency

Based on generalized hypothalamic dysfunction, children 
and adults with PWS are at risk for central adrenal insuf-
ficiency (CAI). The first published cross-sectional analy-
sis in 2008 of adrenal insufficiency in children with PWS, 
reported CAI in 60 % of cases after receiving an overnight 
single-dose of metyrapone [136]. However, five subse-
quent studies using different methodologies, including 
low- and high-dose Synacthen and insulin tolerance test-
ing did not confirm the reported high frequency of CAI 
[137–141].

Isolated ACTH insufficiency is rare but it may be a 
component of a multiple hormone deficiency (MPHD). 
Development of additional pituitary hormone deficien-
cies in children with acquired MPHD or initially diag-
nosed with growth hormone deficiency (GHD) is char-
acterized by a sequential order of hormonal loss, usually 
GH, TSH, LH/FSH, and ACTH [142]. In adults, LH/FSH 
disturbances have been reported after GH problems, then 
followed by TSH and with ACTH being the last pituitary 
hormone deficiency [143]. Although additional inher-
ent and exogenous factors may regulate adrenal andro-
gen production, normal ACTH secretion action is needed 
for adrenarche [144–146], which is increased in children 
with PWS. The true prevalence of CAI in PWS therefore 
remains unclear with no consensus present among endo-
crinologists as to whether evaluation should be done for 
CAI and/or glucocorticoid treatment preoperative or dur-
ing significant stress.

Metyrapone (30 mg/kg orally at midnight) inhibits 
11-hydroxylase, the final step in cortisol synthesis, thereby 
decreasing cortisol secretion and subsequently increasing 
ACTH secretion. Using metyrapone is a cumbersome test 
that is rarely performed because of the difficulty in obtain-
ing metyrapone and the risk of precipitating an adrenal cri-
sis. Hence, parents of children with PWS should be coun-
seled about symptoms consistent with adrenal insufficiency 
and physicians alerted to the risk and treated accordingly 
should symptoms occur. In summary, PWS is a classic 
example of a genetic disorder requiring a complex multi-
discipline approach to treat ongoing growth, medical, and 
endocrine disturbances common to all individuals through-
out the natural history of this condition.
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